Ψec: A local spectral exterior calculus

نویسندگان

چکیده

We introduce $\Psi \mathrm{ec}$, a discretization of Cartan's exterior calculus differential forms using wavelets. Our construction consists $r$-form wavelets with flexible directional localization that provide tight frames for the spaces $\Omega^r(\mathbb{R}^n)$ in $\mathbb{R}^2$ and $\mathbb{R}^3$. By construction, satisfy de Rahm co-chain complex, Hodge decomposition, $k$-dimensional integral an is $(r-k)$-form. They also verify Stokes' theorem forms, most efficient finite dimensional approximation attained directionally localized, curvelet- or ridgelet-like forms. The \mathrm{ec}$ builds on geometric simplicity Fourier domain. establish this structure by extending existing results transform to frequency description calculus, including, example, Plancherel symbols all important operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Exterior Calculus

The language of modern mechanics is calculus on manifolds, and exterior calculus is an important part of that. It consists of objects like differential forms, general tensors and vector fields on manifolds, and operators that act on these. While the smooth exterior calculus has a long history going back to Cartan, Lie, Grassmann, Hodge, de Rham and many others, the need for a discrete calculus ...

متن کامل

Exterior Calculus: Economic Profit Dynamics

A mathematical model for the Dynamics of Economic Profit is constructed by proposing a characteristic differential oneform for this dynamics (analogous to the action in Hamiltonian dynamics). After processing this form with exterior calculus, a pair of characteristic differential equations is generated and solved for the rate of change of profit P as a function of revenue R (t) and cost C (t). ...

متن کامل

A primer on exterior differential calculus

A pedagogical application-oriented introduction to the calculus of exterior differential forms on differential manifolds is presented. Stokes’ theorem, the Lie derivative, linear connections and their curvature, torsion and non-metricity are discussed. Numerous examples using differential calculus are given and some detailed comparisons are made with their traditional vector counterparts. In pa...

متن کامل

Smoothed projections in finite element exterior calculus

The development of smoothed projections, constructed by combining the canonical interpolation operators defined from the degrees of freedom with a smoothing operator, has proved to be an effective tool in finite element exterior calculus. The advantage of these operators is that they are L2 bounded projections, and still they commute with the exterior derivative. In the present paper we general...

متن کامل

Finite Element Exterior Calculus for Parabolic Problems

In this paper, we consider the extension of the finite element exterior calculus from elliptic problems, in which the Hodge Laplacian is an appropriate model problem, to parabolic problems, for which we take the Hodge heat equation as our model problem. The numerical method we study is a Galerkin method based on a mixed variational formulation and using as subspaces the same spaces of finite el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2021

ISSN: ['1096-603X', '1063-5203']

DOI: https://doi.org/10.1016/j.acha.2020.10.003